Dynamic selective environments and evolutionary traps in human-dominated landscapes.
نویسندگان
چکیده
Human activities can alter selective environments in ways that can reduce the usefulness of certain ornamental traits as honest signals of individual quality and, in some cases, may create evolutionary traps, where rapid changes in selective environments result in maladaptive behavioral decisions. Using the sexually dichromatic, socially monogamous Northern Cardinal (Cardinalis cardinalis) as a model, we hypothesized that urbanization would erode the relationship between plumage coloration and reproductive success. Because the exotic Amur honeysuckle (Lonicera maackii) provides carotenoids, is a preferred habitat attribute, and increases vulnerability to nest predation, we predicted the presence of an evolutionary trap, whereby the brightest males would achieve the lowest reproductive success. Working at 14 forests in Ohio, USA, 2006-2008, we measured plumage color, monitored reproduction, and quantified habitat within territories. In rural landscapes, the brightest males bred earliest in the season and secured more preferred territories; however, annual reproduction declined with plumage brightness. Coloration of urban males was not associated with territory attributes or reproduction. Female redness across all landscapes was negatively related to reproduction. Poor reproductive performance of otherwise higher-quality males probably resulted from preferences for honeysuckle, which reduces annual reproduction when used as a nesting substrate early in the season. In this way, exotic shrubs prompted an evolutionary trap that was avoided in urban forests where anthropogenic resources disassociated male color and reproductive phenology and success. Our study illustrates how modified selective environments in human-dominated landscapes might shape microevolutionary processes in wild bird populations.
منابع مشابه
How the type of anthropogenic change alters the consequences of ecological traps.
Understanding altered ecological and evolutionary dynamics in novel environments is vital for predicting species responses to rapid environmental change. One fundamental concept relevant to such dynamics is the ecological trap, which arises from rapid anthropogenic change and can facilitate extinction. Ecological traps occur when formerly adaptive habitat preferences become maladaptive because ...
متن کاملOptimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods
In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...
متن کاملEvolutionary Optimization in Spatio-temporal Fitness Landscapes
Spatio–temporal fitness landscapes that are constructed from Coupled Map Lattices (CML) are introduced. These landscapes are analyzed in terms of modality and ruggedness. Based on this analysis, we study the relationship between landscape measures and the performance of an evolutionary algorithm used to solve the dynamic optimization problem.
متن کاملQuaternary Deposits and the Paleolithic Sites on the Northern Edge of Iranian Central Desert: Introduction of the Newly-found Paleolithic Sites of Shour-e Qazi and Sar-Darreh
The northern fringes of the Iranian Central Desert (NICD) is a long corridor created due to the proximity of the Alborz Mountains to the north and the Central Desert to the south. For the first time, one of the present authors (HVN) highlighted the importance of the NICD as one of the routes for the dispersal of human populations from Africa to East Asia during Pleistocene epoch. In recent year...
متن کاملError Thresholds on Dynamic Fittness-Landscapes
In this paper we investigate error-thresholds on dynamics fitness-landscapes. We show that there exists both lower and an upper threshold, representing limits to the copying fidelity of simple replicators. The lower bound can be expressed as a correction term to the error-threshold present on a static landscape. The upper error-threshold is a new limit that only exists on dynamic fitnesslandsca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 92 9 شماره
صفحات -
تاریخ انتشار 2011